Chemical Vapor Deposition of Metallic Films Using Plasma Electrons as Reducing Agents

Metallic thin films are key components in electronic devices and catalytic applications. Deposition of a conformal metallic thin film require using volatile precursor molecules in a chemical vapor deposition (CVD) process. The metal centers in such molecules typically have a positive valence, meaning that reduction of the metal centers is required on the film surface. Powerful molecular reducing agents for electropositive metals are scarce and hampers the exploration of CVD of electropositive metals. We present a new CVD method for depositing metallic films where free electrons in a plasma discharge are utilized to reduce the metal centers of chemisorbed precursor molecules. We demonstrate this method by depositing Fe, Co and Ni from their corresponding metallocenes using electrons from an argon plasma as a reducing agent.