Chemical Vapor Deposition of Metallic Films Using Plasma Electrons as Reducing Agents

18 December 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Metallic thin films are key components in electronic devices and catalytic applications. Deposition of a conformal metallic thin film require using volatile precursor molecules in a chemical vapor deposition (CVD) process. The metal centers in such molecules typically have a positive valence, meaning that reduction of the metal centers is required on the film surface. Powerful molecular reducing agents for electropositive metals are scarce and hampers the exploration of CVD of electropositive metals. We present a new CVD method for depositing metallic films where free electrons in a plasma discharge are utilized to reduce the metal centers of chemisorbed precursor molecules. We demonstrate this method by depositing Fe, Co and Ni from their corresponding metallocenes using electrons from an argon plasma as a reducing agent.


thin films

Supplementary materials

Supporting Information - submitted


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.