Abstract
The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against β-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability were often challenging. By strategically installing a fluorine atom on an electron-rich phenyl ring of a previously characterized inhibitor 1, we discovered compound 2 as a promising lead compound with improved in vivo metabolic stability. Compound 2 maintained excellent cellular potency against CSNK2, submicromolar antiviral potency, favorable solubility, and was remarkably selective for CSNK2 when screened against 192 kinases across the human kinome. We additionally present a co-crystal structure to support its on-target binding mode. In vivo, compound 2 was orally bioavailable, and demonstrated modest and transient inhibition of CSNK2, although antiviral activity was not observed, possibly attributed to its lack of prolonged CSNK2 inhibition.
Supplementary materials
Title
Supplementary Information
Description
Figure S1: Phosphorylation of CSNK2 substrate EIF2S2 in A549-ACE2 cells.; Table S1: Selectivity of 2 in the NanoBRET K192 Selectivity Panel.; Table S2: Crystallographic refinement statistics.; Table S3: Comparison of in vitro metabolic clearance of compounds 1 and 2.; NMR spectra and HPLC trace for compound 2.
Actions