Transition Energy, Orientation Force and Work Done in Transitional Behavior Atoms: Formulating New Principles in Thermodynamics

25 September 2023, Version 12
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Studying basic parameters of heat and thermodynamics can explore new insights into science. Gaseous and solid atoms under transitional behaviors can explore remarkable advances in chemical and physical sciences. An anomaly in the first law of thermodynamics can be recognized explicitly when the transitional behaviors of atoms are in the study. By gaining transition energy, gaseous atoms undertake a transition state. Hence, the work performed by the gaseous atoms. Symbolically, a plus sign is needed to use for it. However, the transitions in solid atoms occur because of the absorbing transition energy. So, the work performance is in the minus sign. A force exerted on the gaseous atom electron is different from on the solid atom electron, where transition energy changes the potential energy of that electron, thus controlling the orientation force. An anomaly resolves by changing the equations of internal energy. On attaining the mid-states, gaseous and solid atoms introduce cooling and heat effects in elastically driven electronic states. A transition state between re-crystallization and liquid states can be considered a mid-state. In generating cooling or heating energy, an electron executes dynamics by remaining within the occupied energy knot. Thus, constantly driven electronic states of atoms cause disorder and irreversible cycles. The study presents a basic understanding of the first law of thermodynamics, cold and heat energy, entropy, and condensed matter science at the atomic and electronic levels under a new insight.

Keywords

Transition energy
Orientation force
Work done
Heating effect
Entropy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.