Understanding and Utilizing Reactive Oxygen Reservoirs in Atomic Layer Deposition of Metal Oxides with Ozone

14 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Contrary to idealized depictions, atomic layer deposition (ALD) reactions do not always take place solely at the gas-solid interface. The iron oxide ALD system was recently shown to grow by a subsurface mechanism in which reactive oxygen is absorbed into the growing film during ozone exposure, forming an effective reservoir of oxygen. This study investigates the fundamental chemical mechanisms behind the oxygen reservoir phenomenon and extends it to other binary and multicomponent oxide ALD systems. NiO ALD is found to exhibit similar saturation behavior and crystallinity trends with ozone as Fe2O3 ALD. Oxygen uptake from ozone into the film is directly detected in situ for both processes, and in vacuo spectroscopy elucidates possible chemical states of the subsurface oxygen reservoirs in each material. In situ process characterization reveals that the reserved oxygen participates in surface combustion reactions capable of activating ALD growth. The oxygen reservoir mechanism is also shown to generalize to other oxide systems, correlating with trends in oxygen mobility, crystallinity, and metal oxidizability. Finally, the reactive oxygen reservoirs are utilized in the deposition of a multicomponent FeAlxOy material, previously unreported by ALD, revealing that the reserved oxygen can activate growth of other processes and possesses the potential to address nucleation challenges in other ALD systems.


atomic layer deposition
thin films
ternary materials

Supplementary materials

Supporting Information
Supporting figures and text for the main manuscript.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.