Scale-Dependent Friction-Coverage Relations and Non-Local Dissipation in Surfactant Monolayers

10 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Surfactant molecules, known as organic friction modifiers (OFMs), are added to lubricants to reduce friction and wear between sliding surfaces. In macroscale experiments, friction generally decreases as the coverage of OFM molecules on the sliding surfaces increases. However, recent nanoscale experiments with sharp atomic force microscopy (AFM) tips have shown increasing friction. To elucidate the origin of these opposite trends, we use nonequilibrium molecular dynamics (NEMD) simulations and study kinetic friction between OFM monolayers and an indenting nanoscale asperity. For this purpose, we study various coverages of stearamide OFMs on iron oxide surfaces and silica AFM tips with different radii of curvature. For our small tip radii, the friction coefficient and indentation depth both have a non-monotonic dependence on OFM surface coverage, with maxima occurring at intermediate coverage. This suggests that friction is dominated by plowing. We rationalise the non-monotonic relations through a competition of two effects (confinement and packing density) that varying the surface coverage has on the effective stiffness of the OFM monolayers. We also show that kinetic friction is not very sensitive to the sliding velocity in the range studied, indicating that it originates from instabilities. Indeed, while friction predominately originates from the plowing action of the monolayers by the leading edge of the tip, thermal dissipation is mostly localised in molecules towards the trailing edge of the tip.


Organic Friction Modifier


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.