Synthesis and Biological Evaluation of Iodinated Fidaxomicin Antibiotics

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fidaxomicin (1, tiacumicin B, lipiarmycin A3) is a marketed antibiotic that is used in the treatment of C. difficile infections. Based on the analysis of a cryo- EM structure of fidaxomicin binding to its target enzyme (RNA-polymerase), a cation-p interaction of the aromatic moiety with an arginine residue was identified. Therefore, the variation of the substituents and concurrently changing the electronic properties of the aryl moiety represents an interesting strategy in search for new fidaxomicin analogs. Herein, we report the first semisynthetic access to new fidaxomicin analogs with varying halogen substitutents via a Pd-catalyzed hydrodechlorination reaction. Subsequent iodination gave access to the first iodo-fidaxomicin derivatives, which matched or improved antibacterial properties compared to fidaxomicin against Mycobacterium tuberculosis and Staphylococcus aureus ATCC 29213.

Keywords

fidaxomicin
antibiotics
natural products
catalysis
semisynthesis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.