Abstract
Plasma proteomics has regained attention in recent years through advancements in mass spectrometry instrumentation and sample preparation, as well as new high-throughput affinity-based technologies. Here, we evaluate the analytical performance of the new Olink Reveal platform, a proximity extension assay (PEA)-based technology quantifying 1,034 proteins and covering many biological pathways, in particular immune system processes. Using spiked-in recombinant Interleukin-10 (IL-10) and vascular endothelial growth factor D (VEGF-D) in the NIST SRM 1950 plasma standard, we assessed the linearity, sensitivity, precision and accuracy of the Olink Reveal assay. The results demonstrated strong linear relationships (R$^2$ 0.922–0.953) for both IL-10 and VEGF-D across spiked-in concentrations, confirming the robust technical performance of Olink Reveal and underscoring its suitability for relative quantitation in large-scale studies. The resulting data contains no sensitive or personally identifiable information, and is therefore suitable for use in benchmarking and software development. The data is publicly available in the PRIDE repository with identifier PAD000009.