Abstract
As the global fight against antimicrobial resistance in bacteria becomes increasingly pressing, new tool compounds are needed to study and evaluate novel therapeutic targets. Here, cysteine-directed fragment-based drug discovery is coupled with high throughput chemistry direct-to-biology screening to target the catalytic cysteine of a family of bacterial effector proteins, the Novel E3 Ligases (NELs) from Salmonella and Shigella. These effector E3 ligases are attractive as potential drug targets because they are delivered into host cells during infection, have no human homologues and disrupt host immune response to infection. We successfully identify hit compounds against the SspH subfamily of NELs from Salmonella and show that these proteins are inhibited by compound treatment, representing an exciting starting point for development into specific and potent tool compounds.
Supplementary materials
Title
Supplementary Information
Description
Supplementary Figures
Actions
Title
Supplementary Tables 1 and 2
Description
Library and compound information
Actions
Title
Supplementary Table 3
Description
SAXS parameters
Actions