pyBinder: Label-free Quantitation to Advance Affinity Selection-Mass Spectrometry

20 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Affinity selection-mass spectrometry (AS-MS) is a ligand discovery platform that relies upon mass spectrometry to identify molecules bound to a biomolecular target. When utilized with large peptide libraries (108 members), AS-MS sample complexity can surpass the sequencing capacity of modern mass spectrometers, resulting in incomplete data, identification of few target-specific ligands, and/or incomplete sequencing. To address this challenge, we introduce pyBinder to apply label-free quantitation (LFQ) to AS-MS data to process primary MS1 data and develop two scores to rank the peptides from the integration of their peak area: target selectivity and concentration-dependent enrichment. We benchmark pyBinder utilizing AS-MS data developed against a protein, anti-hemagglutinin antibody 12ca5, revealing that peptides that contain a motif known for target-specific high-affinity binding are well characterized by these two scores. AS-MS data from a second protein target, WD Repeat Domain 5 (WDR5), is analyzed to confirm the two pyBinder scores reliably capture the target-specific motif-containing peptides. From the results delivered by pyBinder, a list of target-selective ions is developed and fed back into subsequent MS experiments to facilitate expanded data generation and the targeted discovery of selective ligands. pyBinder analysis resulted in a four-fold increase in motif-containing sequence identification for WDR5 (from 3 ligands discovered to 14 discovered), showing the utility of the two scores. This work establishes an improved approach for AS-MS to enable discovery outcomes (i.e., more ligands identified), but also a way to compare AS-MS data across samples, protocols, and conditions broadly.

Keywords

affinity selection
mass spectrometry
ligand discovery
data analysis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials, methods, and computational model description.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.