A robust “bottom up” proteomics pipeline is integral for assessing protein structure using hydroxyl radical protein footprinting mass spectrometry.

17 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydroxyl Radical Protein Footprinting (HRPF) monitors macromolecular structure and dynamics by utilizing hydroxyl radicals to probe the solvent-accessible side chains of proteins. Hydroxyl radicals form irreversible covalent bonds with protein side chains based on their solvent accessibility and intrinsic reactivity. Following labeling, bottom-up proteomics which involves protease digestion and liquid chromatography (LC-MS/MS) coupled with mass spectrometry, is routinely employed to detect and quantify the modified protein side chains. The HRPF technique has been a breakthrough in the field of structural biology, enabling the assessment of structures and interrelationships between proteins, protein-drug complexes or such macromolecular mixtures. It is now being extended to complex applications such as in-cell and in-vivo studies. This perspective focuses on detailing aspects of peptide separations technology in HRPF, with a particular emphasis on chromatography. The discussion further encompasses the HRPF methodology, its current limitations, recent developments, and proposed ideas for future developments for selected research fields.

Keywords

Protein footprinting
Mass spectrometry
Chromatography
Hydroxyl radicals
Structural Biology
Protein analysis
Proteomics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.