Using generative artificial intelligence in chemistry education research: prioritizing ethical use and accessibility

12 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Generative artificial intelligence (GenAI) has the potential to drastically alter how we teach and conduct research in chemistry education. There have been many reports on the potential uses, limitations, and considerations for GenAI tools in teaching and learning, but there have been fewer discussions of how such tools could be leveraged in educational research, including in chemistry education research. GenAI tools can be used to facilitate and support researchers in every stage of traditional educational research projects (e.g. conducting literature reviews, designing research questions and methods, communicating results). However, these tools also have existing limitations that researchers must be aware of prior to and during use. In this research commentary, we share insights on how chemistry education researchers can use GenAI tools in their work ethically. We also share how GenAI tools can be leveraged to improve accessibility and equity in research.


artificial intelligence
AI in chemistry education
chemistry education research

Supplementary materials

Supporting Information
Additional text on (a) ethics principles for GenAI use and (b) use of GenAI by persons with disabilities


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.