Bispecific Antibodies Produced via Chemical Site-Specific Conjugation Technology: AJICAP Second Generation

25 August 2023, Version 1


Bispecific antibodies are biotherapeutics that amalgamate the specificities of two distinct antibodies into one molecule. Bispecific antibodies can be utilized in a broad range of diagnostic and therapeutic applications; however, their engineering requires genetic modification and remains time-consuming. Therefore, in this study, we used AJICAP second-generation technology, which drives the production of site-specific antibody-drug conjugates in a practical and robust manner, without genetic modification requirements, to generate bispecific antibodies. Using haloketone chemistry as an alternative to maleimide chemistry, which carries reaction risks, we successfully produced site-specific antibody conjugates. Pharmacokinetic studies revealed that the haloketone-based antibody conjugate was stable in the rat plasma. The resultant bispecific antibodies were rigorously evaluated, and surface plasmon resonance measurements and flow cytometry analyses confirmed that antigen binding remained intact. Additionally, the affinity for the neonatal Fc receptor (FcRn) was retained after conjugation. Further cytotoxicity evaluation emphasized the pronounced activity of the generated bi-specific antibodies. These preliminary findings highlight the potential of AJICAP second-generation technology in BisAb production. This novel approach introduces a fully chemical, site-specific strategy capable of producing bispecific antibodies, heralding a new era in the field of biotherapeutics.


bispesific antibodies
antibody-drug conjugates
site-specific conjugation technology
maleimide alternatives

Supplementary materials

Supporting information
Analytical data


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.