Mutate and Conjugate: A Method to Enable Rapid In-Cell Target Validation

25 July 2023, Version 1


Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain- containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having minimal effect on BRD4(1) function. We then screen a focused, KAc mimic-containing fragment set, and a diverse fragment library against the mutant and wild-type proteins, and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutant and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for non-covalent ligand development.


Target validation

Supplementary materials

Supporting information
Biological methods, chemical experimental section, computational methods sections, supplementary figures, and tables, NMR spectra and HPLC traces for new compounds.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.