Adjustable Positive-Negative Signal in Self-Driven Photodetector based on Cubic CH3NH3PbI3 Large Single Crystal

23 May 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, for the first time, self-driven photodetector based on cubic CH3NH3PbI3 large single crystal (C-MAPbI3 LSC) with adjustable positive-negative signal is fabricated. The preparation of MAPbI3 large single crystal (MAPbI3 LSC) is realized by the method of growth-drop-growth (GDG). The band gap of MAPbI3 single crystals with Pm-3m (221) space group (6.134×6.134×6.134 Å, 90.00 x 90.00 x 90.00) is 1.58 eV. CH3NH3+ cation is orientation-disorder within the perovskite cubo-octahedral cavity. The photocurrent density at 803 nm of the C-MAPbI3 LSC photodetector under different bias voltages is the highest under different wavelength. The responsivities (R), response time, external quantum efficiencies (EQE) and the detectivity (D) for C-MAPbI3 LSC photodetector at 803 nm wavelength with 1 W m-2, respectively, is 508.7 µA/mW, 0.1338 ms, 79.6% and 8.64*1011 Jones. Notably, the C-MAPbI3 LSC photodetector can be self-driven under 0 V bias voltage, in particular, the positive and negative values of the photocurrent can be adjusted. The proposed mechanism of poling inducing built-in potential is explained adjustable positive-negative signal in self-driven photodetector based on cubic CH3NH3PbI3 large single crystal.

Keywords

CH3NH3PbI3

Supplementary materials

Title
Description
Actions
Title
20210302 Electronic Supplementary Information(1)
Description
Electronic Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.