Photoactivable WAY-161503 and Desmethylclozapine for Tight Regulation of Serotonin Receptor 2C Signaling.

30 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Recreating the signaling profile a chemical synapse to analyze serotonin receptor activation is a challenge. This is due in part to the kinetics of the synapse, where neurotransmitters are rapidly released and quickly cleared by active reuptake machinery. One strategy to produce a rapid rise in a bio-orthogonally controlled signal is via photocaged compounds. In this work, a complementary pair of BODIPY photoremovable protecting groups was conjugated to a 5HT2C subtype selective agonist, WAY-161503, and antagonist, N-desmethylclozapine, to generate “caged” versions of these drugs. These conjugates can release their bioactive drug upon stimulation with green light (agonist) or red light (antagonist). We report on the synthesis, characterization, and bioactivity testing of the conjugates against the 5HT2C receptor. We then characterize the kinetics of photolysis quantitatively using HPLC and qualitatively in cell culture conditions stimulating live cells. The compounds are shown to be stable under dark conditions for 48 hours at room temperature, yet photolyze readily when irradiated with visible light. In live cells expressing the 5HT2C receptor, precise spatiotemporal control of the degree and length of calcium signaling is demonstrated. By loading both compounds in tandem and leveraging spectral multiplexing as a non-invasive method to control local small molecule drug availability, we can reproducibly initiate and suppress intracellular calcium flux on a timescale not possible by traditional methods of drug dosing. These tools enable a greater spatiotemporal control of 5HT2C modulation and will allow for more detailed studies of the receptors signaling, interactions with other proteins, and native physiology.


Calcium Signaling

Supplementary materials

Supporting Information for Photoactivable WAY-161503 and Desmethylclozapine for Tight Regulation of Serotonin Receptor 2C Signaling.
synthetic procedures, biological protocols, and NMR spectra


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.