Antineoplastic Properties of THCV, HHC and their anti-Proliferative effects on HPAF-II, MIA-paca2, Aspc-1, and PANC-1 PDAC Pancreatic Cell Lines

22 December 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Cannabinoid receptors CB1 and CB2 are the primary endogenous receptors with which cannabinoids interact, inducing physiological and psychological effects. Although interactions with other receptors including TRPV1 and GPCR55, have been recognized in earlier studies, these interactions may play a significant role in cancer remediation through the unspecified upregulation or downregulation of specific pathways. The main active constituents within the cannabis plant are cannabidiol (CBD) and tetrahydrocannabinol (THC), which have been categorized as either non-intoxicating with benefit or intoxicating with no benefit. These categories are constantly ignored, as cannabinoids have shown efficacy in the treatment of certain diseases and ailments as single-agent compounds. Tetrahydrocannabivarin (THCV), a rare cannabinoid, is a homologue of THC, with the C5 alkyl chain having three carbons rather than the standard five carbon length. THCV has garnered attention in a clinical setting as an anti-obesity drug treating glucose issues. Hexahydrocannabinol (HHC), a hydrogenated analogue of THC, is a rare cannabinoid like THCV. These cyclic cannabinoids are considered rare, because they are typically found in minimal to trace amounts within cannabis sativa and their given C. indica, and C. ruderalis sub species. Increased popularity of these rare cannabinoids has led to proposed experimentation leading to assessing the cytotoxicity of these cannabinoids toward, cancer cells of the pancreas (MIA-PaCa2, HPAF-II, and PANC1). The data evaluated through such studies led to the proposed idea of these rare cyclic cannabinoids towards the treatment of pancreatic cancer due to the modest efficacy as single agent antineoplastics compared to common single agent antineoplastics on the market, with evidence being strongly presented when compared to commercially available anticancer agents poly(ADP-ribose) polymerase (PARP) inhibitors.


in vitro

Supplementary materials

Supporting Information for Antineoplastic Properties of THCV HHC
Supporting information including abbreviations, spectroscopy, and chromatograms


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.