Plant Terpenoid Permeability through Biological Membranes Explored via Molecular Simulations

13 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Plants synthesize small molecule diterpenes comprised of twenty carbon from precursors isopentenyl diphosphate and dimethylallyl disphosphate, manufacturing diverse compounds used for defense, signaling, and other functions. Industrially, diterpenes are used as natural aromas and flavoring, as pharmaceuticals, and as natural insecticides or repellents. Despite diterpene ubiquity in plant systems, it remains unknown how plants control diterpene localization and transport. For many other small molecules, plant cells maintain transport proteins that control compound compartmentalization. However, for most diterpene compounds, specific transport proteins have not been identified, and so it has been hypothesized that diterpene may cross biological membranes passively. Through molecular simulation, we study membrane transport for three complex diterpenes from among the many made by members of the Lamiaceae family to determine their permeability coefficient across plasma membrane models. To facilitate accurate simulation, the intermolecular interactions for leubethanol, abietic acid, and sclareol were parameterized through the standard CHARMM methodology for incorporation into molecular simulations. To evaluate the effect of membrane composition on permeability, we simulate the three diterpenes in two membrane models derived from sorghum and yeast lipidomics data. We track permeation events within our unbiased simulations, and compare implied permeation coefficients with those calculated from Replica Exchange Umbrella Sampling calculations using the inhomogeneous solubility diffusion model. The diterpenes are observed to permeate freely through these membranes, indicating that a transport protein may not be needed to export these small molecules from plant cells. Moreover, the permeability is observed to be greater for plant-like membrane compositions when compared against animal-like membrane models. Increased permeability for diterpene molecules in plant membranes suggest that plants have tailored their membranes to facilitate low-energy transport processes for signaling molecules.


passive diffusion
membrane simulation
molecular dynamics

Supplementary materials

Supporting Information: Plant Terpenoid Permeability through Biological Membranes Explored via Molecular Simulation
SI for the main text.

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.