Biased quartz crystal microbalance method for studies of CVD surface chemistry induced by plasma electrons

25 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In a recently presented chemical vapor deposition (CVD) method, plasma electrons are used as reducing agents for deposition of metals. The plasma electrons are attracted to the substrate surface by a positive substrate bias. Here, we present how a standard quartz crystal microbalance (QCM) system can be modified to allow applying a DC bias to the QCM sensor to attract plasma electrons to it and thereby also enable in situ growth monitoring during the electron-assisted CVD method. We show initial results from mass gain evolution over time during deposition of iron films using the biased QCM and how the biased QCM can be used for process development and provide insight to the surface chemistry by time-resolving the CVD method. Post deposition analyzes of the QCM crystals by cross-section electron microscopy and high-resolution X-ray photoelectron spectroscopy, show that the QCM crystals are coated by an iron-containing film and thus function as substrates in the CVD process. A comparison of the areal mass density given by the QCM crystal and the areal mass density from elastic recoil detection analysis and Rutherford backscattering spectrometry was done to verify the function of the QCM setup. Time-resolved CVD experiments show that this biased QCM method holds great promise as one of the tools for understanding the surface chemistry of the newly developed CVD method.

Keywords

QCM
plasma
CVD

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.