Light-fuelled primitive replication and selection in evolvable biomimetic chemical networks


The concept of chemically evolvable replicators is central to abiogenesis. Evolvability requires three essential components: energy harvesting mechanisms for non-equilibrium dissipation, kinetically asymmetric decomposition pathways, and transfer of structural information in the autocatalytic cycles. We observed a UVA light-fuelled chemical network displaying sequence-dependent replication and replicator decomposition. The system was constructed with primitive peptidic foldamer components. The photocatalytic formation-recombination cycle of thiyl radicals was coupled with the molecular recognition steps in the replication cycles. Thiyl radical-mediated chain reaction was responsible for the replicator death mechanism. The competing and kinetically asymmetric replication and decomposition processes led to light intensity-dependent selection far from equilibrium. Here we show that this system can dynamically adapt to the level of energy influx and seeding. The results highlight the feasibility of the complex phenomenon of chemical evolvability with primitive building blocks and simple chemical reactions.

Version notes

1. Nomenclature has been simplified. 2. References have been updated for the definition of dissipative systems. 3. Figures 1 and 3 have been updated and new supporting figures have been added. 4. Wording has been updated.