Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable and Blood Brain Barrier Penetrant Prote-olysis Targeting Chimera Degrader of Leucine Rich Repeat Kinase 2

13 July 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most promising targets for Parkinson’s Disease. LRRK2 targeting strategies have primarily focused on Type 1 kinase inhibitors, which however have limitations as the inhibited protein can interfere with natural mechanisms which could lead to undesirable side effects. Herein, we report the development of LRRK2 Proteolysis Targeting Chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2 targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of Apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values range from 82-90%, and degradation half-lives span from 0.6h to 2.4h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α=5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F=15%) and can penetrate the blood brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study non-catalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.


Proteolysis-targeting chimeras
Targeted Protein Degradation
LRRK2 kinase
E3 ligases
protein kinase
parkinson's disease

Supplementary materials

Supporting Information
First generation compound structures, Synthetic procedures for the first and the second generation PROTACs, abbreviations used, figures, compounds characterizations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.