Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles

05 April 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


We derive a systematic and general method for parametrizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g. all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, torques, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parametrized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parametrized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as liquid crystals, organic semiconductors, and nucleic acids.


molecular dynamics
coarse grain
soft condensed matter
computer simulation
statistical mechanics

Supplementary materials

Supplementary Material: Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles
Supporting information for paper


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.