Abstract
In this manuscript, I speculated that the energy density distributions along space and time in a quantum system are uniform. Thus, the complementary energy contributions are added to the classical solutions of the 1D particle in a box problem, making the energy density a complex distribution function over space and time. Then the concept is extended to the free rotation problem with a Hamiltonian slightly different than the classical Schrödinger equation. The picturized energy distribution functions and associated time evolution are described in movies for comparison between example classical wave functions and the energy density functions. The wave functions for the hydrogen atom are then guessed based on the historical solutions.
Supplementary materials
Title
SI
Description
MATLAB codes and movies
Actions
Title
V4 rotation Y10Y11Y1n1.gif
Description
Rational wavefunction.
Actions
Title
V1 PIAB movie gif
Description
Particle in a box solution.
Actions
Title
V3 ClassicalRotationY10Y11Y1n1
Description
Classical rotation wavefunction.
Actions