Catalysis

Olefin-surface interactions: a key activity parameter in silica-supported olefin metathesis catalysts

Authors

Abstract

Molecularly defined and classical heterogenous Mo-based metathesis catalysts are shown to display dis-tinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (< 100 °C). Namely, catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and support-ed Mo alkylidenes are highly active and do not display such dramatic dependence on chain length. State-of-the-art 2D solid-state NMR analyses of post-metathesis catalysts, complemented by FTIR and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products due to interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and overall catalytic performance depend on product desorption, even in the liquid phase with non-polar substrates. This study further highlights the role of support and active site composition and dynamics on activity as well as the need to consider adsorption in catalyst design.

Version notes

Revised manuscript and SI

Content

Thumbnail image of olefin-surface interactions chemrxiv, 2022-01-26.pdf

Supplementary material

Thumbnail image of SI 2022-01-26.pdf
Supplementary information
Experimental section, catalyst characterization, additional solid-state NMR analyses, summary of MD results