Olefin-surface interactions modulate the activity of silica-supported Mo-based olefin metathesis catalysts

19 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecularly defined and classical heterogenous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (< 100 °C). Namely, catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on chain length. 2D solid-state NMR analyses of post-metathesis catalysts, complemented by molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products due to interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and overall catalytic performance depend on product desorption, even in the liquid phase with non-polar substrates. This study further highlights the need to consider adsorption when designing catalysts and the unique activity of molecularly defined supported metathesis catalysts prepared via SOMC.

Keywords

Heterogeneous catalysis
Solid-state NMR spectroscopy
Olefin metathesis

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Experimental section, catalyst characterization, additional solid-state NMR analyses, summary of MD results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.