Techno-economic Analysis of High-Temperature Thermal Energy Storage for On-Demand Heat and Power

17 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we present a concept of a high-temperature, thermal energy storage (HT-TES) system for large-scale long duration energy storage (>10 hours) applications. The system relies on tunable composite ceramic materials with high electrical conductivity and can output the stored energy flexibly in the form of heat at 1100 degrees C or higher, and as electricity. We model the performance and cost of the system in a techno-economic analysis to identify key material and system properties influencing viability. For applications with daily operation (12 hours storage duration), we find achieving levelized storage costs below US Department of Energy’s 5 ₵/kWhe (1-2.5 ₵/kWhth equivalent) target by 2030 is possible. Candidate materials should have above 600-900 high-temperature cycle stability while offering at least 104 S/m of electrical conductivity. Our results suggest this system can be economical for longer storage durations (weeks to months) when coupled with intermittent charging using surplus renewable energy sources.

Keywords

High-temperature energy storage
Techno-economics analysis
Composite materials

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Detailed procedures, assumptions, economic parameters, etc.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.