Abstract
SARS-CoV-2 uses its spike protein receptor-binding domain (RBD) to interact with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells. Inhibitors of the RBD-ACE2 interaction are therefore promising drug candidates in treating COVID-19. Here, we report a covalent bonding aptamer that can block the RBD-ACE2 interaction and neutralize SARS-CoV-2 pseudovirus infection by forming covalent bonds on RBD, resulting in more than 25-fold enhancement of pseudovirus neutralization efficacy over the original binding aptamer. The chemically modified aptamer is equipped with sulfur(VI) fluoride exchange (SuFEx) modifications and covalently targets important RBD residues within the RBD-ACE2 binding interface, including Y453 and R408. The covalent bonding is highly specific to RBD over other proteins such as human serum albumin (HSA), ACE2 and immunoglobulin G1 (IgG1) Fc. Our study demonstrates the promise of introducing covalent inhibition mechanisms for developing robust RBD-ACE2 inhibitors against SARS-CoV-2 infection.
Supplementary materials
Title
Supporting Information for the manuscript
Description
Additional Tables and Figures
Actions