De Novo Design of Type II Topoisomerase Inhibitors as Potential Antimicrobial Agents Targeting a Novel Binding Region

16 December 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By 2050 it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, costing the world economy $100 trillion. Clearly, strategies to address this problem are required as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy, as this site is distinct from the fluoroquinolone-DNA site binding site. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by the published thiophene allosteric inhibitor. This series was evaluated in vitro against E. coli DNA gyrase, exhibiting IC50 values in the low micromolar range. The structure-activity relationship reported herein suggests insights to further exploit this allosteric site, offering a pathway to overcome fluoroquinolone resistance.

Keywords

DNA gyrase
structure-based drug design
antimicrobial resistance

Supplementary materials

Title
Description
Actions
Title
New SI for Orritt et al Gyrase paper
Description
Chemical and biochemical methods updated.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.