Localized Quantum Chemistry on Quantum Computers

21 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantum chemistry calculations of large, strongly correlated systems are typically limited by the computation cost that scales exponentially with the size of the system. Quantum algorithms, designed specifically for quantum computers, can alleviate this, but the resources required are still too large for today’s quantum devices. Here we present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation (QPE) and variational unitary coupled cluster singles and doubles (UCCSD) to compute their ground state energy. Our algorithm, termed “local active space unitary coupled cluster” (LAS-UCC), scales linearly with system size for certain geometries, providing a polynomial reduction in the total number of gates compared with QPE, while providing accuracy above that of the variational quantum eigensolver using the UCCSD ansatz and also above that of the classical local active space self-consistent field. The accuracy of LAS-UCC is demonstrated by dissociating (H2)2 into two H2 molecules and by breaking the two double bonds in trans-butadiene and resources estimates are provided for linear chains of up to 20 H2 molecules.

Keywords

Quantum Computing
Quantum Phase Estimation
VQE
Multireference methods
localized active space

Supplementary materials

Title
Description
Actions
Title
Supplementary Information for Localized Quantum Chemistry on Quantum Computers
Description
Supplementary Information for Localized Quantum Chemistry on Quantum Computers.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.