Identification of single Ru(II) ions on ceria as a highly active catalyst for abatement of NOx pollutants

06 September 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Atom trapping allows to prepare catalysts with atomically dispersed Ru ions anchored to the ceria support. The resulting catalysts free of expensive noble metals such as Pt, Pd, Rh (whose prices are ~8-60 times higher than Ru on the per-molar basis) with Ru loadings of only 0.25-0.5 wt% show excellent activity in industrially important catalytic NO oxidation reaction, a critical step that requires use of relatively large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 catalysts are stable during continuous cycling, ramping and cooling as well as presence of moisture. Furthermore, Ru1/CeO2 shows excellent NOx storage properties during cold start, with improved NO adsorption compared with the best described Pd/Zeolite NO adsorbers with ~2-3 times higher Pd loadings. We clarify the location of Ru(II) ions on the ceria surface and identify mechanism of NO oxidation (as well as reactive storage) using DFT calculations and in-situ DRIFTS/Mass-spectroscopy measurements. Furthermore, we show the possible applications of Ru1/CeO2 in gasoline engines for NO reduction by CO: only 0.1 wt% of atomically dispersed Ru is sufficient to achieve high activity at low temperatures. With the aid of excitation-modulation in-situ infra-red measurements, we uncover the elementary steps of NO reduction by CO on an atomically dispersed ceria-supported catalyst. Our study highlights the potential applicability of single-atom catalysts to industrially relevant NO and CO abatement.

Keywords

diesel and gasoline engine pollution abatement
low temperature passive NOx adsorber
three way catalyst
NO oxidation catalyst
CO oxidation catalyst
single atom heterogeneous ceria catalsysts
palladium platinum ruthenium Pd Pt Ru on ceria CeO2
Ruthenium ceria as a superior catalyst

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.