Exploring Electrochemical C(sp3)–H Oxidation for the Late-Stage Methylation of Complex Molecules

03 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The “magic methyl” effect – a dramatic boost in the potency of biologically active compounds from the incorporation of a single methyl group – provides a simple yet powerful strategy employed by medicinal chemists in the drug discovery process. Despite significant advances, methodologies that enable the selective C(sp3)–H methylation of structurally complex medicinal agents remain very limited. In this work, we disclose a modular, efficient, and selective strategy for the α-methylation of protected amines (i.e., amides, carbamates, and sulfonamides) by means of electrochemical oxidation. Mechanistic analysis guided our development of an improved electrochemical protocol on the basis of the classic Shono oxidation reaction, which features broad reaction scope, high functional group compatibility, and operational simplicity. Importantly, this reaction system is amenable to the late-stage functionalization of complex targets containing basic nitrogen groups that are prevalent in medicinally active agents. When combined with organozinc-mediated C–C bond formation, our protocol enabled the direct methylation of a myriad of amine derivatives including those that have previously been explored for the “magic methyl” effect. This synthetic strategy thus circumvents multistep de novo synthesis that is currently necessary to access such compounds and has the potential to accelerate drug discovery efforts.

Keywords

Electrochemistry
C–H methylation
Late stage functionalization
Magic methyl effect
Medicinal chemistry
Electrosynthesis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental and computational data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.