High-pressure reaction profiles and activation volumes of 1,3-cyclohexadiene dimerizations computed by the extreme pressure-polarizable continuum model (XP-PCM)

28 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantum chemical calculations are reported for the thermal dimerizations of 1,3-cyclohexadiene at 1 atm and high pressures up to 6 GPa. Previous experiments [Klärner et al. Angew. Chem. Int. Ed. 1986, 25, 108], based on measured activation energies and activation volumes, suggested concerted mechanisms for the formation of the endo [4+2] cycloadduct and a [6+4]-ene adduct, and stepwise mechanisms for the formation of the exo [4+2] cycloadduct and two [2+2] cycloadducts. Computed activation enthalpies (ωB97XD, CCSD(T) and SC-NEVPT2) of plausible dimerization pathways at 1 atm agree well with the experiment activation energies and the values from previous calculations [Ess et al. J. Org. Chem. 2008, 73, 7586]. High-pressure reaction profiles, computed by the recently-developed extreme pressure-polarizable continuum model (XP-PCM), show that the reduction of reaction barrier is more profound in concerted reactions than in stepwise reactions, which is rationalized on the basis of the volume profiles of different mechanisms. A clear shift of the transition state towards the reactant by high pressure is revealed for the [6+4]-ene reaction by the calculations. The computed activation volumes by XP-PCM agree excellently with the experimental values, confirming the existence of competing mechanisms in the thermal dimerizations of 1,3-cyclohexadiene.

Keywords

high pressure
cycloaddition
ene reaction
DFT
XP-PCM
activation volume
reaction mechanism

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
3D drawings of transition state structures, a more detailed description of the XP- PCM method, PES of the disproportionation of threo-4, and supplementary reaction profiles to Figure 8
Actions
Title
Output files
Description
Raw output files of calculations containing optimized geometries and absolute energies
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.