Abstract
Chitin is the most abundant N-containing polysaccharides in nature and D-glucosamine is one of most successful commercial monomer products in current market. Here we reported an arylboronic acids catalyzed upgrade of glucosamines in aqueous solution for deoxyfructosazine which is an important high-value compound in pharmaceutical and food industries, as well as a promising bio-based platform molecule for speciality chemicals and sustainable functional materials. Such direct integration of deoxyfructosazine into development of renewable chemicals/functional materials might be a practical way for utilization of chitin as a renewable nitrogen source. A mechanism focusing on catalytic cycle of arylboronic acid via a boron transfer was also proposed.
Supplementary materials
Title
Supporting information V3
Description
General procedures for STables, STable contents; HNMR spectra for all tables and STables.
Actions