Testing the Limitations of MD-based Local Electric Fields Using the Vibrational Stark Effect in Solution: Penicillin G as a Test Case

22 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Non-covalent interactions underlie nearly all molecular processes in the condensed phase from solvation to
catalysis. Their quantification within a physically consistent framework remains challenging. Experimental vibrational Stark effect (VSE)-based solvatochromism can be combined with molecular dynamics (MD) simulations to quantify the electrostatic forces in solute-solvent interactions for small rigid molecules and, by extension, when these solutes bind in enzyme active sites. While generalizing this approach towards more complex (bio)molecules, such as the conformationally flexible and charged penicillin G (PenG), we were surprised to observe inconsistencies in MD-based electric fields. Combining synthesis, VSE spectroscopy, and computational methods, we provide an intimate view on the origins of these discrepancies. We observe that the electrics fields are correlated to conformation-dependent effects of the flexible PenG side-chain, including both local solvation structure and solute conformational sampling in MD. Additionally, we identified that MD-based electric fields are consistently overestimated in 3-point water models in the vicinity of charged groups; this cannot be entirely ameliorated using polarizable force fields (AMOEBA) or advanced water models. This work demonstrates the value of the VSE as a direct method for experiment-guided refinements of MD force fields and establishes a general reductionist approach to calibrating vibrational probes for complex (bio)molecules.

Keywords

electrostatics
vibrational Stark effect
molecular dynamics
solvation
solvatochromism
beta-lactam
antibiotics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.