Earth, Space, and Environmental Chemistry

Operando Studies of Iodine Species in an Advanced Oxidative Water Treatment Reactor


We present an electrochemical advanced oxidation process (eAOP) reactor employing expanded graphite, potassium iodide (KI), and electrical current, which demonstrates an exceptionally high rate of inactivation of E. coli (6log reduction in viable cells) at low current density 0.6 mA/cm^2), with low contact time (5 minutes) and low concentration of KI (10 ppm). Operando X-ray fluorescence mapping is used to show the distribution of iodine species in the reactor, and operando X-ray absorption spectroscopy in the anodic chamber reveals iodine species with higher effective oxidation state than periodate. Operando electrochemical measurements confirm the conditions in the anodic chambers are favourable for the creation of highly oxidized iodine products. The killing efficiency of this new eAOP reactor far exceeds that expected from either traditional iodine-based electrochemical water treatment or advanced oxidation systems alone, a phenomenon that may be associated with the production of highly oxidized iodine species reported here.


Thumbnail image of 20210119_Operando_studies_of_iodine_species_in_an_advanced_oxidative_water_treatment_reactor.pdf