We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings. Learn more about our Privacy Notice... [opens in a new tab]

Deep Alanine Scanning Reveals Potent Multi-alanine-substituted Protein–protein Interaction Inhibitors

21 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Establishing structure–activity relationships is crucial to understand and optimize the activity of peptide-based inhibitors of protein–protein interactions. Single alanine mutagenesis provides limited information toward this goal. To guide multiple simultaneous peptide modifications with retention of biological activity, we used synthetic combinatorial alanine-scanning libraries—in which each position was varied with either the wild type residue or alanine—with an affinity selection platform to study the mutational tolerance of protein–ligand interactions. Applying this platform to a peptide binder to the oncogenic protein MDM2, several multi-alanine-substituted analogs that retained low nanomolar affinity were discovered, including a 13-mer binder with seven alanine substitutions at non-hotspot positions. These binders served as templates for further modifications, generating cysteine-substituted, perfluoroaryl-stapled peptides with sub-nanomolar affinity and ten-fold improved proteolytic stability. The alanine substitution tolerances for peptide ligands of the 12ca5 antibody and 14-3-3 regulatory protein were also reported, demonstrating the general applicability of this new platform. We envision that deep combinatorial alanine scanning will be a powerful tool for structure–activity optimization of potential peptide therapeutics.

Keywords

peptide binders
Combinatorial library
Affinity Selection Screening
alanine scanning
Structure-activity relationship
peptide therapeutics

Supplementary materials

Title
Description
Actions
Title
CombiAla SI v10
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.