Excited State Dynamics of Perylenediimide films with Isopropyl phenyl- and Undecane-Substitution

22 December 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The aggregation of Perylene Diimide (PDI) and its derivatives strongly depends on the molecular structure, and therefore has great impact on the excited states. By regulating the molecular stacking such as monomer, dimer, J- and/or H-aggregate, the formation of different excited states is adjustable and controllable. In this study, we have synthesized two kinds of PDI derivatives - undecane-substituted PDI (PDI-1) and diisopropylphenyl-substituted PDI (PDI-2), and the films are fabricated with spin-coating method. By employing photoluminescence (PL), time-resolved photoluminescence (TRPL) and transient absorption (TA) spectroscopy, the excited-state dynamics of two PDI amorphous films have been investigated systematically. The result reveals that both films have formed excimer after photoexcitation mainly due to the stronger electronic coupling among molecule aggregate in the amorphous film. It should be noted that the excited state dynamics in PDI-2 shows a singlet fission like process, which is evidenced by the appearance of triplet state absorption. This study provides the dynamics of excited state in amorphous PDI films, and pave the way for better understanding and adjusting the excited state of amorphous films.

Keywords

Perylene diimide derivatives
singlet fission
triplet state
excimer
molecule stacking

Supplementary materials

Title
Description
Actions
Title
SI 20201220
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.