Abstract
The bicyclo[1.1.1]pentane (BCP) unit exhibits special physical and chemical properties and is under scrutiny as a bioisostere in drug molecules. We employed methodologies for the synthesis of different BCP triazole building blocks from one precursor, 1-azido-3-iodobicyclo[1.1.1]pentane, by Cu(I)-catalyzed 1,3-dipolar cycloaddition (“click”) reactions and integrated cycloaddition-Sonogashira coupling reactions. Thereby, we accessed three classes of substituted BCP derivatives: 1,4-disubstituted triazoles, 5-iodo-1,4,5-trisubstituted triazoles and 5-alkynylated 1,4,5-trisubstituted triazoles. This gives entry to the synthesis of multiply substituted BCP triazoles either on a modular or a one-pot basis. These methodologies were further utilized for appending large chromophoric porphyrin moieties onto the BCP core.
Supplementary materials
Title
SI I-BCP-N3
Description
Actions