Organoselenium mild electrophiles in the inhibition of Mpro and SARSCoV-2 replication

24 September 2020, Version 1


New Ebselen-like derivatives resulted to be very strong in vitro inhibitors of SARS-CoV-2 main protease. We demonstrated that this activity mainly depends on the electrophilicity of the selenium atom that is considerably higher in the N-substituted 1,2- benzoselenazol-3(2H)-ones respect to the corresponding diselenides allowing it to be rapidly attached by free thiols affording sulfur-selenium intermediates that are further subjected to thiol exchange processes. This data paints a very complex scenario that requires us to consider Ebselen and Ebselen-like derivatives as potential electrophilic substrates for the several other free thiols present in the cell beside the target free cysteine. The sulfur selenium intermediates are milder electrophiles that could be theoretically implicated in both the detoxification process as well as in the final enzymatic inhibition. We here demonstrated that the in vitro inhibition activity is not fully reproduced in the prevention of viral replication in the cell-based assay. This indicates that the structure of the substituents introduced in the Ebselen scaffold is a crucial factor to control the reactivity of the selenated molecule in the network of thiol exchanges, as well as for molecular recognition of the targeted enzymatic cysteine. For this reason, an in-depth investigation is strongly desirable to better understand how to increase the activity and the selectivity of Ebselen derivatives overcoming the issues of the apparent PAINS-like role of Ebselen. Furthermore, besides the antiviral activity, thee selected compounds also showed a different ability to reduce the virus-induced cytopathic effect, indicating that other mechanisms could be implicated. One may consider here the well-known cytoprotective antioxidant activity of Ebselen and its derivatives.


electrophilic inhibition
ebselen compounds
SARS coronavirus


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.