A Volatile Signal Controls Virulence in the Plant Pathogen Pseudomonas syringae pv. syringae and a Strategy for Infection Control in Organic Farming

03 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Pseudomonas syringae is an important pathogen of many agriculturally valuable crops. Among the various pathovars described P. syringae pv. syringae (Pss) has a particularly wide host range, infecting primarily woody and herbaceous host plants. The ability of Pss to cause bacterial apical necrosis of mango trees is dependent on the production of the antimetabolite toxin mangotoxin. The production of this toxin was shown to be regulated by a self-produced signaling molecule. In this study, we determined the structure of the Pss signal molecule belonging to the recently described family of diazeniumdiolate communication molecules. Employing a targeted mass spectrometry-based approach, we provide experimental evidence that the major signal produced by Pss is the volatile compound leudiazen, which controls mangotoxin production and virulence in a detached tomato leaflet infection model. Experimental results demonstrate that KMnO4 solution inactivates leudiazen and that treatment of infected leaves with KMnO4 abolishes necrosis. This strategy represents the first example of chemically degrading a signaling molecule to interfere with bacterial communication. The application of KMnO4 solution, which is regulatorily approved in organic farming, may constitute an environmentally friendly strategy to control Pss infections.


Natural products
crop protection
Organic Farming
Signaling Molecules
Volatile Compounds


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.