Characterizing Moisture Uptake and Plasticization Effects of Water on Amorphous Amylose Starch Models Using Molecular Dynamics Methods

03 July 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


Dynamics and thermophysical properties of amorphous starch were explored using molecular dynamics (MD) simulations. Using the OPLS3e force field, simulations of short amylose chains in water were performed to determine force field accuracy. Using well-tempered metadynamics, a free energy map of the two glycosidic angles of an amylose molecule was constructed and compared with other modern force fields. Good agreement of torsional sampling for both solvated and amorphous amylose starch models was observed. Using combined grand canonical Monte Carlo (GCMC)/MD simulations, a moisture sorption isotherm curve is predicted along with temperature dependence. Concentration-dependent activation energies for water transport agree quantitatively with previous experiments. Finally, the plasticization effect of moisture content on amorphous starch was investigated. Predicted glass transition temperature (Tg) depression as a function of moisture content is in line with experimental trends. Further, our calculations provide a value for the dry Tg for amorphous starch, a value which no experimental value is available.


Amorphous starch
Water diffusion
Molecular dynamics
Grand Canonical Monte Carlo
Water transport
glass transition point


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.