Synthesis, Structure and Reactivities of Pentacoordinated Phosphorus–Boron Bonded Compounds

04 March 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The isolation and reactivities of two pentacoordinated
phosphorus–tetracoordinated boron bonded compounds were explored. A strong Lewis acidic boron reagent and electronwithdrawing ligand system were required to form the pentacoordinated phosphorus state of the P–B bond. The first compound, a phosphoranyl-trihydroborate, gave a THF stabilised phosphoranyl-borane intermediate upon a single hydride abstraction in THF. This compound could undergo a unique rearrangement reaction, which involved a two-fold ring expansion, to give a fused bicyclic compound or it could act as a mono-hydroboration reagent. The hydroboration reactivity of the intermediate was found to be more reactive towards alkynes over alkenes with good to moderate regioselectivity towards the terminal carbon. The second compound, a phosphoranyl-triarylborate, was found to have different reactivity as it was highly stable towards acids and bases. This is thought to be due to the large bulk around the P–B bond as shown in the crystal structure.


Hydride Reduction
X-ray diffraction
Structure elucidations

Supplementary materials

P-B Full Paper Supp Info FINAL


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.