Structural Contributions to Autocatalysis and Asymmetric Amplification in the Soai Reaction

05 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Diisopropylzinc alkylation of pyrimidine aldehydes – the Soai reaction, with its astonishing attribute of amplifying asymmetric autocatalysis, occupies a unique position in organic chemistry and stands as an eminent challenge for mechanistic elucidation. A new paradigm of ‘mixed catalyst substrate’ experiments with pyrimidine and pyridine systems allows a disconnection of catalysis from autocatalysis, providing insights into the role played by reactant and alkoxide structure. The alkynyl substituent favorably tunes catalyst solubility, aggregation and conformation while modulating substrate reactivity and selectivity. The alkyl groups and the heteroaromatic core play further complementary roles in catalyst aggregation and substrate binding. In the study of these structure activity relationships, novel pyridine substrates demonstrating amplifying autocatalysis were identified. Comparison of three autocatalytic systems representing a continuum of nitrogen Lewis basicity strength suggests how the strength of N-Zn binding events is a predominant contributor towards the rate of autocatalytic progression.

Keywords

absolute asymmetric synthesis, asymmetric amplification, nonlinear effects, organozinc addition

Supplementary materials

Title
Description
Actions
Title
Soai Mechanism Full-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.