Abstract
Rapid development of bacterial resistance has led to an urgent need to find new druggable targets for antibiotics. In this context, residue-specific chemoproteomic approaches enable proteome-wide identification of binding sites for covalent inhibitors. Here, we describe isotopically labeled desthiobiotin azide (isoDTB) tags that are easily synthesized, shorten the chemoproteomic workflow and allow an increased coverage of cysteines in bacterial systems. We quantify 59% of all cysteines in essential proteins in Staphylococcus aureus and discover 88 cysteines with high reactivity, which correlates with functional importance. Furthermore, we identify 268 cysteines that are engaged by covalent ligands. We verify inhibition of HMG-CoA synthase, which will allow addressing the bacterial mevalonate pathway through a new target. Overall, a comprehensive map of the bacterial cysteinome is obtained, which will facilitate the development of antibiotics with novel modes-of-action.
Supplementary materials
Title
SI Zanon et al
Description
Actions
Title
Zanon et al Table S1
Description
Actions
Title
Zanon et al Table S2
Description
Actions
Title
Zanon et al Table S4
Description
Actions
Title
Zanon et al Table S5
Description
Actions
Title
Zanon et al Table S12
Description
Actions