Tailoring Tryptophan Synthase TrpB for Selective Quaternary Carbon Bond Formation

12 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We previously engineered the tryptophan synthase beta-subunit (TrpB), which catalyzes the condensation reaction between L-serine and indole to form L-tryptophan, to synthesize a range of modified tryptophans from serine and indole derivatives. In this study, we used directed evolution to engineer TrpB to accept 3-substituted oxindoles and form C–C bonds leading to new quaternary stereocenters. At first, the TrpBs that could use 3-substituted oxindoles preferentially formed N–C bonds by attacking the oxindole N1 atom. We found, however, that protecting the nitrogen encouraged evolution towards C-alkylation, which persisted even when this protection was removed. After seven rounds of evolution leading to a 400-fold improvement in activity, variant Pfquat efficiently alkylates 3-substituted oxindoles to selectively form new stereocenters at the γ-position of the amino acid products. The configuration of the new γ-stereocenter of one of the products was determined from the crystal structure obtained by microcrystal electron diffraction (MicroED). Substrates structurally related to 3-methyloxindole such as lactones and ketones can also be used by the enzyme for quaternary carbon bond formation, where the biocatalyst exhibits excellent regioselectivity for the tertiary carbon atom. Highly thermostable and expressed at > 500 mg/L E. coli culture, TrpB Pfquat provides an efficient and environmentally-friendly platform for the preparation of noncanonical amino acids bearing quaternary carbons.

Keywords

TrpB
noncanonical amino acid
asymmetric catalysis
quaternary carbon
oxindole
C–C bond formation
directed evolution

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions
Title
NMR Spectra
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.