Covalent-Fragment Screening of Brd4 Identifies a Ligandable Site Orthogonal to the Acetyl-Lysine Binding Sites

12 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the C-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.

Keywords

covalent fragment
bromodomains
BRD4
acetylation

Supplementary materials

Title
Description
Actions
Title
supporting
Description
Actions
Title
supporting-fragment library
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.