Molecular Dynamics of Mycolic Acid Monolayers

27 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Mycobacterium tuberculosis, the organism responsible for TB infection in humans, is inherently resilient against host defences and anti-TB drugs. This persistence is attributed partly to the presence of lipids, such as mycolic acids (MAs), which make the cell wall impermeable. To study the conformational dynamics of MAs, we present a coarse-grained model for a representative α-MA (AMA) from Mycobacterium tuberculosisusing the MARTINI force field. The model is used to simulate monolayers of different sizes; a small monolayer consisting of 220 MAs and a large monolayer consisting of 1972 MAs. The model could replicate key features of experimental monolayers such as phase changes and the collapse point. By studying the conformation of MAs in the simulated monolayers, it was found that AMA did not fold into the W-conformation at large surface areas but was only folded at the head group to give a wide U-shape. On monolayer compression, the MA chains came closer together, into a narrower U-shape, and an ordered monolayer was formed before it collapsed.


mycolic acids
coarse graining
Molecular dynamics simulations

Supplementary materials

SI MDCG 210319 WG


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.