Secondary Structural Changes in Protein as a Result of Electroadsorption at Aqueous-Organogel Interfaces

14 December 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The adsorption of proteins at aqueous-organic interfaces offers the possibility to examine protein structural rearrangements upon interaction with lipophilic phases, without modifying the bulk protein or relying on a solid support. The aqueous-organic interface has already provided a simple means of protein detection, often involving adsorption and ion complexation; however, little is yet known about the protein structure at such interfaces. This work focuses on the interaction between proteins and an electrified aqueous-organic interface via controlled protein electroadsorption. Four proteins known to be electroactive at such interfaces were studied: lysozyme, myoglobin, cytochrome c and hemoglobin. Following controlled protein electrodeposition onto the interface, ex situ structural characterization of the proteins by FTIR spectroscopy was undertaken, focusing on secondary traits within the amide I band. The structural variations observed included unfolding to form aggregated anti-parallel beta-sheets, where the rearrangement was specifically dependent on the interaction with the organic phase. This was supported by MALDI-ToF MS measurement, which showed the formation of protein-anion complexes for three of these proteins, and molecular dynamics simulations, which modelled the structure of lysozyme at an aqueous-organic interface. Based on these findings, the modulation of protein secondary structure by interfacial electrochemistry opens up unique prospects to selectivly modify proteins.

Keywords

Anti-parallel β-sheet
electroadsorption
electrochemistry
proteins
secondary structure

Supplementary materials

Title
Description
Actions
Title
Booth et al chemrxiv SI-141218
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.