Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid Accelerated Enantioselective C-H Functionalization

11 February 2019, Version 2


The role of mono-protected amino acid (MPAA) ligands in accelerating enantioselective cyclopalladation and palladium catalyzed C-H func-tionalization was investigated using kinetic, spectroscopic, and computational methods. Single crystal X-ray diffraction and NMR spectroscopy demonstrate that MPAA ligands bind catalytically competent di-palladium complexes as bridging carboxylates. The catalytic relevance of the observed di-palladium species was evaluated by kinetic analysis. The kinetic method of continuous variation demonstrated that a complex contain-ing a single MPAA-bridged di-palladium core (Pd2(MPAA)1) is an active catalyst for the reactions studied. The experimental studies are con-sistent with density functional theory calculations that indicate enantioinduction can be achieved by a single MPAA ligand bridging a di-palladium catalyst through secondary sphere hydrogen-bonding interactions that lower the barrier to C-H activation of the major enantiomer.


Supplementary materials

MPAA 02 01
SI 02 08


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.