Femtosecond Pumping Rate Dependence of Fragmentation Mechanisms in Matrix-Assisted Laser Desorption Ionization

07 June 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The benzyltriphenylphosphonium (BTP) thermometer ion is utilized to characterize the fragmentation mechanisms of matrix-assisted laser desorption/ionization (MALDI) for femtosecond ultraviolet laser pulses. We demonstrate that the survival yield of BTP approaches unity under these conditions, which suggests that a minimal amount of fragmentation is occurring. It is also shown that the survival yield of BTP is insensitive to the laser fluence. However, the magnitude of fragmentation for the matrix increased notably for the same fluence range. These results indicate that the amount of energy transferred from the matrix ions to the BTP thermometer ions is minimal because the femtosecond desorption applied here occur within the stress-confinement regime. This observation is in agreement with recent molecular dynamics simulations which predict that it should be possible to separate both desorption and ionization processes in the regime of stress-confined desorption. Our results indicate that angiotensin is the largest biomolecule which could be routinely measured with these pulses. A mass upper-limit supports the hypothesis that ionization is hindered by the increased thermal gradients imposed in the lattice and associated velocity distribution within the ablation process from the much higher lattice heating rate with femtosecond pulses. This effect results in the temporal overlap between the neutral molecules and the matrix ions being too small to result in sufficient proton exchange for ionization.

Keywords

Femtosecond
Desorption
Ionization
Fragmentation
Benzyltriphenylphosphonium

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.